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Synopsis 

The real and imaginary parts of the complex modulus of polymers which must be supported can 
be determined with the Du Pont Dynamic Mechanical Analyzer. Polymer coatings of equal thickness 
are laminated on both sides of a thin metal sheet. The flexural modulus of the laminate is given 
by E = Elx3 + E2(l - r3) ,  where El and E2 are the moduli of the metal and the polymer, respectively, 
and x is the thickness fraction of metal. Under some conditions, the dynamic viscosity of the polymer 
can also be determined. 

INTRODUCTION 

The Du Pont Dynamic Mechanical Analyzer (DMA)' has proved to be a useful 
and efficient tool for characterizing the internal motions of polymers. This is 
especially true when it is coupled to a computational device to automate the 
calculation and plotting of quantities of scientific and engineering importance.2 
A need has been recognized for a technique for measuring the properties of ma- 
terials which are fluid or simply too soft or tacky to be self-supporting. Such 
materials have sometimes been applied to fiber braids, fabrics, or springs to 
provide the necessary mechanical support. These techniques permit one to 
observe the temperatures and relative magnitudes of loss peaks, but the complex 
modulus cannot usually be determined quantitatively because of the geometric 
complexity. 

We have demonstrated a technique which is applicable to the DMA or any 
device which is based on flexural deformations. Layers of polymers of equal 
thickness are laminated to both sides of a thin, loss-free sheet of metal. 

Mathematical Relationships 

The detailed nature of the deformations of the polymer samples in the DMA 
experiments has not been studied until now. As a first approach to the problem, 
we assume here that the motion of the polymer-coated sheet of metal in our ex- 
periments can be described by pure bending vibrations. We therefore neglect 
all shear strains in the sample and consider the deformation to consist only of 
extension and contraction of the longitudinal elements. 

In pure bending, the compressive and elongational forces on any cross section 
cancel each other so that there is no net force on the laminate. The bending is 
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then characterized by the bending moment M .  For a laminate of width b and 
thickness t ,  which is bent to a radius r ,  the bending moment is given by 

M = EIlr (1) 

where E is the elastic modulus of the material of the laminate and I = bt3/12. 
The product EI is called the flexural rigidity and is a measure of the resistance 
to bending. For example, for three-point loading, the central deflection of the 
beam due to a force F is given by yo = (F1EI)l 3148, where 1 is the distance between 
the outer support points. Similar results hold for other configurations. These 
results and the derivation of the equation for M can be found in standard texts 
on elasticity.3 

If the laminate (width b,  total thickness t )  is made up of two or more visco- 
elastic materials, the bending moment M* will be a frequency-dependent com- 
plex quantity which can be written in the form 

M* = E*I/r (2) 

This defines the complex effective elastic modulus E*(w) = E’(w) + iE”(w) of 
the composite laminate. We consider the symmetric case of a three-year lami- 
nate, the inner layer having a thickness d l  and the two outer layers being of equal 
thickness dp. Here the subscripts refer to two materials which have elastic 
modulii: 

E;  = E;  + iE; and E;  = E ;  + iEi (3) 

Assuming the validity of linear viscoelasticity theory, it is straightforward to 
calculate M* in the required form. In terms of E;and EH we can then express 
the effective modulus E * as 

E*(w) = E ; x ~  + EH(1 - x3) = EH + ( E ;  - Ea)x3 (4) 

where 

x = d l / ( d l  + 2d2). (5) 

In our experiment, 2 corresponds to films of polymer coated on the two sides 
of a metal plate (1). Then E;(w) can be assumed known and E;(w) 1: 0. The 
DMA experiment measures E’(w) and E”(o), and the elastic modulus of the 
polymer can then be extracted from this as 

E ~ ( u )  = [E’(w) - E;x3]/(1 - x 3 )  (6) 

E;(w) = E ” ( w ) / ( l  - ~ 3 )  (7) 

or 

tan62 = tan6/[1 - (E;lE’)x3], where tans2 = ElIE;, tans = E”/E’ (8) 

Alternatively, E; can be obtained as the intercept of a plot of E’ vs. x3 by analogy 
with the right-hand side of eq. (4). Since x, the thickness fraction of metal is 
less than 1, x3 decreases rapidly as the thickness of the polymer layers is in- 
creased, thereby narrowing the difference between Ek and E’ or E i  and E”. 
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Fig. 1. Modulus of brass shimstock coated with one to five layers of 3M rubber cement tape ad- 
hesive on each side. 

APPLICATION TO A MODEL SYSTEM 

For the central metal layer, we used 5.1-mil brass shimstock. This material 
has a modulus E;, of 67.4 GPa at  250°C and 75.9 GPa at  -15OOC. Its loss 
modulus is less than 10-3 GPa. For a soft, tacky polymer, we chose the adhesive 
from 3M rubber cement tape. A DSC scan showed a glass temperature (onset) 
of -55OC and a small (AH = 0.12 cal/g) endotherm at -10°C. From an infrared 
spectrum, it was concluded that at  least the major component is poly(n-butyl 
acrylate). The thickness of each layer of adhesive is 1.8 mils. Thus, the thick- 
ness fraction of brass is 

(9) 
where n is the number of layers of adhesive on each side. 

DMA measurements were made on laminates with rz from 1 to 5. Thus, x 3  
varied from 0.20 to 0.01. The dependence of the modulus on temperature for 
each of these laminates and the uncoated shimstock is shown in Figure 1. The 
modulus data a t  -15OOC and +25OC are plotted against x 3  in the left side of 
Figure 2. At  25"C, the intercept is essentially zero. Under these conditions, 

x = 5.1/(5.1 + 3.6n) 
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Fig. 2. Dependence of the modulus of brass-adhesive laminates on the thickness fraction of 
brass. 
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Fig. 3. Dynamic mechanical modulus for the adhesive from 3M rubber cement tape. 

E' should be proportional to x3.  From the log log plot on the right side of Figure 
2, the experimental exponent is 3.17. Since the thicknesses are not known with 
a high degree of precision, the agreement between theory and experiment is 
considered satisfactory. 

Values of EL and E;,  the properties of the polymer, were calculated at 10" in- 
tervals using the intercept method for E' and using data for n = 3-5 for E". 
These data are plotted in Figure 3. The a and &relaxations are seen at  about 
-35 and -13OoC., respectively. It should be noted that we have not corrected 
for the differences in thermal expansion coefficients between the metal and the 
polymer. This would cause x to vary with temperature. 

DYNAMIC VISCOSITY 
The relationship between a cyclic stress and strain can be expressed in terms 

of either a complex modulus or a complex viscosity. Ferry4 has given the fol- 
lowing relationship between the real part: of the complex viscosity, q', and the 
imaginary part of the complex shear modulus, G": 

q' = G " / o  = G"/B.lrf (10) 

The dynamic viscosity may not be comparable with the steady state viscosity. 
For example, a crosslinked rubber could have a finite dynamic viscosity, even 
though there is no steady state flow. Entanglements may produce a similar 
contrast in polymers of high molecular weight. On the other hand, this approach 
is not applicable to materials of low viscosity because the damping in the me- 
chanical linkage of the DMA may be greater than that due to the viscosity of the 
sample. 
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To demonstrate the concept, we chose polytetrafluoroethylene (PTFE) at  
temperatures between 50°C and the melting point. Data taken with a capillary 
rheometer exhibit strongly non-Newtonian beha~ior .~  Comparisons were made 
at an apparent strain rate y equal to 27rf, where f is the frequency of the DMA. 
Thus the shear stress from the capillary measurement may be compared with 
the loss modulus from the DMA. Since the resistance to shear is small compared 
to the resistance to compression, it is assumed that the shear modulus is ap- 
proximately one third of the Young's modulus. Capillary data for several vari- 
eties of PTFE at 3OOOC were presented in Figure 1 of Ref. 5. A t  an apparent 
shear rate of 30 s-l, the shear stress was 4-9 X lo5 Pa. The equivalent quantity 
computed from DMA data was 6 X lo5 Pa. Since brass has a significant level 
of internal friction at  temperatures above 300°C, 3-mil stainless steel shimstock 
was used for the laminates with PTFE. 

The dependence of equivalent shear stress at  about 30 s-l on temperature is 
shown in Figure 4. Several approaches were used with the DMA, including an 
unlaminated PTFE control, laminates with two values of x , the thickness fraction 
of metal, and an extrapolation of laminate data to x = 0 (the intercept method). 
At temperatures below 150°C, the DMA method gives higher stresses. In the 
middle range the two methods give the same order of magnitude. Above 30O0C, 
the capillary method gives increasing stresses5 while the DMA method gives 
stresses which continue to decrease with increasing temperature. Above the 
melting point of PTFE, the DMA method indicates a dynamic viscosity below 
the limit of measurement. Using a tensile technique, Nishioka and Watanabe6 
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Fig. 4. Comparison of DMA and capillary data for the dependence of shear stress on temperature 
at an apparent shear rate of 30 s-l. (0) Control, (0 )  intercept, (0) X = 0.058, (A) X = 0.115. 
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obtained a viscosity of 1011-1012 poises. They also reported that the melt was 
rubbery with an instantaneous Young’s modulus of 2-3 X lo7 dynes/cm2 
GPa). Using DMA data on laminates and the intercept method of calculation, 
we obtained a modulus of 1.4 X GPa at 38OOC. 
Thus, PTFE above its melting point behaves like a rubber in having a low dy- 
namic viscosity, a high steady state viscosity, and a modulus near lo7 dynes/cm2 
( GPa). 

GPa at 350°C and 9.2 X 

CONCLUSIONS 

The DMA laminate technique provides a convenient way to get quantitative 
or semiquantitative values of the dynamic mechanical properties of polymers 
which must be supported. In addition to fluid, soft, or tacky substances, it is 
applicable to coatings and systems which are undergoing changes such as drying, 
crosslinking, or reactions induced by light. These changes can be followed as 
functions of time, temperature, or environmental factors. 

For the determination of relaxation temperatures and the comparison of 
samples, coatings as thin as 2 mils have proved useful. For quantitative mea- 
surements of modulus and loss modulus, thicker layers and especially a range 
of thicknesses are preferred. 
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